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i SUMMARY

Ln analysis of film condensation on a vertical fluted tube has been made
considering gravitational and surface tension effects over the entire fluted
surface, and using surface-oriented coordinates. For the first time surface

tension effects are determined, as they should, from the shape of the

condensate-vapor interface rather than the shape of the flute.

Two-dimensional conduction within the condensate film as well as in the fluted

tube is considered. A finite-difference solution of the highly non-linear

partial different ial equation for the film thickness is coupled with a

finite-element solution of the conduction problem. The procedure has been
Gppra

tested on a sinusoidal flute with amplitude to pitch ratio %0.2. A linear

extrapolation, on a log-log basis, of our results shows good comparison with

experimental dati)ir
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i 1. INTRODUCTION

The U.S. Navy has a continued interest in the reduction of the size and

weight of propulsion compoﬂents aboard both surface vessels and submarines.

YT

Some studies are currently underway in the Navy to determine the savings in
both weight and volume which can occur 1if the condenser is designed to use

corrugated or indented tubing to enhance heat transfer on both the shell and

S At

: tube sides. While a comprehensive research program has been underway at the
Raval Postgraduaée School to study various enhancement techniques for

% horizontal condenser tubes [1,2], an attractive alternative aboard submarines

is a vertical condenser oriented aft of the steam turbine as shown in Figure

3 1(a). With this arrangement, there would be a shorter machinery stack length

compared to a horizontal condenser mounted underneath the turbine. This would
allow a smaller diameter submarine to be bullt at a significant reduction in
cost. The ultimate aim of this project is therefore to assess the reduction

in condenser weight and size that may be feasible if the vertical tubes in

this condenser are fluted on the outside (i.e., the steam side), Figure 1(b). ~

Many methods [3] for enhancing condensation heat transfer have been

proposed. Among them, Gregorig [4] first recognized the importance of surface -
tension in film condensation on vertical fluted tubes. Thereafter, many l

experimental studies [5-11] on vertical fluted surfaces were made to confirm

his findings. Lustenader, et al., [5] employed a fluted vertical tube and BT

obtained about four times larger heat transfer coefficients than those on a NG
.'_\}1
e Y
vertical smooth tube. Carnavos (6] carried out experiments on a doubly fluted :{\}1
' vertical tube and found the augmentation ratio of condensation heat transfer N
)
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fate to be about six. Thomas [7,8] tested a vertical tube with longitudinal
rectangular fins and wires. The augmentation ratio was about eight. Newson
and Hodgson [9] manufactured various condenser tubes of highly enhanced heat
transfer performance. Combs and his co-workers [10, 11] at Oak Ridge Natiornal
Laboratory found the augmentation ratio to be around five for condensation of
ammonia and refrigerants on vertical fluted tubes.

Gregorig's theoretical model has also been improved upon but much still
remains to be done. Edwards, et al., [12] proposed a condensation model on a
heat transfer surface of triangular fins on the assumption of liquid film
attaching to the tip of fin with a contact angle. The effect of a locally
thin condensate film on the side of the fin (Figure 2) was not considered by
them as well as by Fujii and Honda [13]. The latter, however, did consider
two-dimensional conduction within the condensate film in the trough region
(Figure 2) and within the fin wall. Mori, et al., [14] considered the effect
of a thin condensate ‘film on the side of the fin but neglected the variation
of its thickness in the vertical direction. They also considered only
one-dimensional conduction within the fin and neglected any conduction within
the condensate film in the trough region. Hirasawa, et al., [15] improved
upon [1l4] in that they included the variation of a thin condensate film in the
vertical direction but neglected conduction within the fin and the film
completely. Panchal and Bell [16, 17] also neglected conduction within the
fin and the film while analysing a sinusoidal fluted tube, but later found
that two-dimensional conduction is important within the fin and the film for a
triangular fin [18]. A recent empirical analysis by Barnes and Rohsenow [19],
based largely on (16, 20], reports an augmentation ratio of about fifteen for

condensation of steam on a fluted surface while most earlier studies
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cbnsidered condensation of a refrigerant and found mch smaller augmentation
ratios. With present day knowledge, it is difficult to ascertain whether this
discrepancy is due to different fluids or due to a questionable analysis.

All theoretical analyses discussed above break up the fluted surface into
basically two parts. In the portion near the crest, gravity is neglected in
comparison to the surface tension effect, while in the portion near the
trough, the reverse is done. The patching between the two regions is carried
out at a point that is selected quite arbitrarily at times [15-18]. This
isolation of the two important effects, gravity and surface tension, is
Justified on the basis that the condensate film is thick in the trough region
and thin over the crest. This is, however, not true over the initial portion
of the tube length in the vertical direction nor during the initial portion of
the tube Just below a condensate drainage skirt (Figure 1(b)). These initial
portions may be a few pitches in length. A recent analysis by Stack and
Merkle [21] does attempt to solve the complete equation with both
gravitational and surface tension effects included over the entire flute but
has three major drawbacks. First, when the condensate film in the trough
region has thickened, the analysis treats it in the boundary-layer-sense, that
is, it neglects all velocity gradients except those in the direction normal to
the fluted surface. Second, the analysis is restricted to impracticably low
values of amplitude to pitch ratio of the flute (0.02 and 0.04) owing to the
use of a Cartesian coordinate system rather than a surface-oriented coordinate
system. Third, the analysis does not consider any heat transfer effects.
Their analysis is only confined to finding the condensate-vapor interface.
Fujii and Honda [13] also considered the entire thin film as one piece over an
initial length of the tube (about 1/8 of the pitch) but neglected the

important surface tension effect.
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Z: . A mjor deficiency of all the above theoretical analyses except [21] lies
;f in the way surface tension effect is determined. Contrary to the general
! belief, this effect does not depend upon the curvature of the condensate-vapor

interface. Instead it depends upon the variaticn of this curvature along the

s

[N

interface. However, since the location of this interface is unknown a priori,
many analyses [12, 13| simply determine it on the basis of the known flute
shape owing to the argument that in the crest region where the surface tension

effect is important, the film is very thin. Such analyses cannot be applied

]

of

: at all to triangular or rectangular fins since their curvature as well as the
variation of curvature along the flute is zero. The same is, however, not

; true for the condensate-vapor interface. Even for sinusoidal flutes, there

B

are large differences between the curvature and its variation along the curved
surface for the given flute and the actual interface (see Fig. 10 and its
discussion in Section 5). Moreover those analyses that do claim to determine

the surface tension effect based on the actual shape of the condensate-vapor

interface are also questionable in their claim as shown in Appendix A.

ii Another problem with all earlier theoretical analyses except [13] is that
A conduction within the condensate film and the tube wall is either completely

ij neglected or considered to be at most one-dimensional. Panchal and Bell [18]

;F point out clearly that two-dimensional conduction should be considered within

-both the condensate film and the tube wall.

] o
AN

In an attempt to take care of these deficiencies, an analysis has been

YT I
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developed during this study that solves the complete equation with

o

gravitational as well as surface tension effects included over the entire

fluted surface using the surface-oriented coordinate system. In addition, for ggc
o

the first time, surface tension effects are determined as they should, from




the actual shape of the condensate-vapor interface rather than the shape of
the flute. Two-dimensional conduction within the condensate film as well as
the fluted tube is also included. A finite-difference solution of the highly
non-linear partial differential equation for the condensate film thickness is
. coupled with a finite-element solution of the conduction problem. Details of

the analysis follow in subsequent sections.
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2. ANALYSIS

Considering the condensate as a viscous, incompressible Newtonian fluid,
and setting up a curvilinear orthogonal coordinate system (xl, X 25 z) as shown

in Fig. 3, the continuity equation yields [22]

= 0 , (2.1)

where (ul, u,, w) are the velocity components in the (xl, X, 2) directions
respectively, and R(xl) is the radius of curvature of the fluted tube. The

momentum equations are (cf. Ref. 22, p. 68)

x1-direction:
9 su u u,u
RE Yy aul Tou, 2+ ? = . Ri 2+ 2 RE 2
x2 xl x2 VA x2 P X 2 xl
2 2 2
- R2 3 u1 . ) u1 . . u1 1 aul u1
2 .2 2 2 R+x ax - 2
(R+x2) axl 3%, 9z 2 2 (R+x2)
R Yy R dR Ry @
+ 3 7% Tax. Y2t 3 dx. ox , (2.2)
(mﬁ) 1 (mﬁ) 1 (mﬁ) 1 1

| ) e
N - . [
Vv
“'A .

R
DR A T A
L

y PRACR S
LN FLPSrw

oy

'
?
d




Xp-direction:

2
9 u du, u
R . Uy au2 oY a_g v 3_2' - R—'+1—" - -%E_
Xs X Xs z X2 b &y
2 2 2
) g2 3°u, . 2°u, . 3°u, . A
B 2.2 2 2 R + x. 3x
r (R + x2) ] x5 3z 2 %2
3
h u, R MW . R_aR RXo  ar My (2.3)
- - - ’ Y
- (Ft+x2)2 (R+x2)2 25 (R+x2)3 dx; 1 (Rex. )3 9%y 3%y
X
z-(verticsl) direction
ow ow aw 1l3p f&
R + x. 1 3x *o Uy g VY% Y owm T ( - P ) g
2 1 2
RS 3%y | 32w 3%w B 4R aw 1
=V 22t 2t ot 3 dx. ax. T Rexo Bx . (2.4)
(R+x2) Bxl 3x2 9z (R+x2) 1" 2 %2

where p and v are the density and kinematic viscosity of the condensate, p is
the pressure in the condensate film, g is the acceleration due to gravity, and
py is the density of the vapor.

In order to simplify these equations, we make the usual assumptions that

inertia terms are negligible compared to other terms, and that 3/3x2 >> B/ax1

- . v
-----------
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or 9/3z, and u, << u, or w. This simplifies the momentum equations (2.2) -

(2.4) to
a2
! = 1_R _3p , (2.5)
axg MR+ x, 3%
3 _
o = 0 , (2.6)
2
32w g8
_3 = - u (p - Pv) [ (2.7)
3x2

where u (=pv) is the dynamic viscosity of the condensate. Integration of

(2.7) with boundary conditions

w =0 at x, = o ,
(2.8)
oW - =
HEX—a -S3 atx2-5 >
yields
S
< 3 '3 X2
vos Tx o+ 3 (p - pv) X5 ( 8 -3 ) . (2.9)
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interface, and 6(xl,z) is the condensate film thickness. Similarly,

e NCEA p 7
' Here S, is the (known) shear stress (in z-direction) on the condensate-vapor
integration of (2.5) with boundary conditions
u, = 0 at x, = 0 .
(2.10)

S

Y

]

8uy
"W = Sy at x2=6 ’
2
yields
S R + x R+ x
: = L Rdp —_2 4
] ul..ux2+ udx1 x21n(R+6)+Rln( R )-x2 . (2.11)
3

Here 5, is the (known) shear stress (in xl—direction) on the condensate-vapor
interface. .

It is advantageous to use the integral form of the continuity equation
rather than the differential form (eqn. (2.1)). We therefore consider the

control volume of Fig. 4, and write the continuity equation as

S
3 f a f ke ( ar )
— u dx + — wdx B e——— — (2.12)
CEN A 172 iz ) 2 pheg axp xp=6 ’

vhere ke is the thermal conductivity of the fluid, and heg is the latent heat
of vaporization. The right side of eqn. (2.12) represents the rate at which

condensation of vapor takes place. The temperature gradient 3T/ dx , can be

11

e
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approximated by (Tg ~ Ty)/8, where Tg is the saturation temperature at which
condensation takes place, and Ty (xl,z) is the wall temperature at X, = 0. ?fﬁ
This approximation basically assumes one-dimensional conduction in the
condensate film but since a/ax2 >> a/ax1 or 3/3z, and we are interested only
in (3T/3x2)6 at present, it is Justifiable to make this approximation. . e
Substituting for w and u, from eqns. (2.9) and (2.11) into egn. (2.12),

and integrating, we get

S, ..2 2 38 2 P
_1&+§__1_;_8__R9p_$z§.+362_(m+n_). :

Mo3x, 2y 3x, u ax, dxq l 2 N 2 o

S 2 2 s k T_-T

s\f, 3 282, & B3 g T S ') Sk

}n (1 + 3 )} ‘e ot ot 3 (p - pv) Tl phfg T . (2.13) —

The pressure p can be related to the surface tension ¢ and radius of curvature

. e s KON UE T

AT LIS

‘v ] to * . AN
- PR R -

Ry of the condensate vapor interface by
P=pg t o/Ry , (2.14) S0
i
where py is the saturation pressure of the vapor. The positive sign holds for :TT
0« x, € xp/2, and the negative sign for xp/2 < x, < xps where xp is the E;a
length (curve DE in Fig. 3) along the fluted surface (in xl-direction) from Ei'
the crest to the trough (over half the pitch). We are basically interested in A
et
analyzing flute shapes that are symmetric about the crest and trough, and e
therefore take advantage of the symmetry by considering only half of the flute fti
pitch. -
12 o
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Assuming ¢ to be constant, the pressure gradient may be calculated from

eqn. (2.14)

i s

1" 1

It is thus the variation of curvature of the condensate-vapor interface that

is of significance, not the curvature itself. 1In general, this can be quite s;;;
different from d(l/R)/dxl, a fact neglected by many previous analyses.
Relations for finding d(l/Ri)/dx1 are given in Appendix A.

Equation (2.13) is a partial differential equation for the condensate -

film thickness G(xl,z). It requires the prior knowledge of shear stresses S1

and S3 that come from vapor dynamics and of Ty (xl,z) that comes from heat
conduction analysis for the fluted tube and condensate film. Eqn. (2.13) P .
involves only first order derivatives w.r.t. z but fourth-order derivatives .
w.r.t. x, oving to the presence of dp/dx, (cf. eqn. (2.15) and (A-15) or

(A-18)). PFor flute shapes that are symmetric about the crest and trough, the

boundary conditions for the solution of eqn. (2.13) are

28 335
3 ° —3 = 0Oatx, =0, and at x, = x_for all z; (2.16a)
3 1 1 p
5 axl

6(x1,0) = 0.

While the boundary condition at z = 0 is correct, it is not practical to start

the integration of eqn. (2.13) from z = O. Therefore, following Stack and

Merkle [21], we replace the boundary condition at z = 0 by 2
G(xl,zo) =38, R (2.16p)
| .
13 I
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: N
where 8, is the film thickness at the initial station z o’ and is found by the i
classical two-dimensional Nusselt solution ool
L

4uk.z (T -T

8 4 o( ) woo) . (2.17)

p(p=p,) Sng,
Here Tyoo = Tw (0,29) = T, (0,0).

For non-dimensionalization, we take the length L of the wvertical fluted
tube in the z-direction and length %p and §y as the characteristic lengths in
the X and xz-directions respectively. Here §, is related to L by the L.
classical Nusselt relation (2.17) in exactly the same manner as § 0 is related

to zo. Thus, we let

A=¢8/8§ , X=x./x, 2Z=2z2/L . (2.18) -
Y Y7p

With this non-dimensionalization, egn. (2.13) and boundary conditions (2.16) __H

can be written as

HM
.l v *

s
W

2 2 9E
A 2( "1
3_ + E3 _a._ + A (3_ +

92

=25 =0 atx=o0l forauzg, (2.20a)

X

!
Sleld

LJ
Atz

1/4
MXZ0) =2, (2.200)
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15 3 (p-pv)xpﬁY

383

B3 B,

Q= R [Rc 8/2 + 3 D, 8%2/4 - (RA + R(ZZ/2D3) 1n (l+DsA/Pc)]F '

Re = R/xp ’

F=tg'i(%;)'*x;a??1‘(mi)r -for 0 <X <1/2

and

+ for 1/2 < X <1

Pn = Ri/xP
Bquation (2.19) is a highly non-linear partial differential equation. It
is solved numerically by the finite-difference technique as detailed below.

15

. - .




3. FINITE-DIFFERENCE METHOD

Equation (2.19) is parabolic in Z so that a forward marching scheme in
the 2-direction can be used. Thus the choice of 60 will affect only the
region near (A and its effegt will die out as z increases. This was indeed
found to be true. Equation (2.19) as written is in conservative form. An
equivalent but non-conservative form can be obtained by expanding the
derivatives in (2.19) and dividing by 3A2, In that non-conservative form, the
equation is still parabolic in Z but the mass is not identically conserved
vhen the equation is integrated numerically (21].

We divide the interval O € X < 1 into n equal parts. Taking &X and 6Z as
the step sizes in X and Z-directions respectively, and using backward

differencing in Z and mixed differencing in X-direction, we write the

finite-difference form of eqn. (2.19) as

3 3
i Yien 0 B (02009 (-8,
(82) 1 (8X)
2 2 2 2 2
. BA%, 1 i t(1-28)8%, \ =(1-8)8%, ) ep ik Si

E €53) 3 TZ)
3E 3E 3D ,
2 1 _3 - 2
* Ak ( x t % ) RTI ’ (3.1)
16
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vhere the subscripts i and k represent the location in X and Z directions
respectively (cf. Fig. 5), and B is a number that is selected between O and 1;
B = 0 corresponds to backward differencing, B = 1 to forward differencing, and
B = 1/2 to central differencing in X. Since eqn. (2.20b) gives A's for all X
(i.e., for all i) at Zy (say k = 1), we can march forward in the Z-direction.
In other words, A's at (k-1) for all i are known in eqn. (3.1). Thus (3.1)
leads to a tridiagonal set of non-linear algebraic equations to be solved for
(n+1) values of A's at each location k of forward march in the Z-direction.
This non-linear set is solved by linearization and successive iteration. Let

us write eqn. (3.1) in the form

Ai(Ai-l,k)m + By(ay )t Ci(Ai+1,k)m = Ry > (3.2)

_where ( )B represents the values at the (current) mth iteration, and the

coefficients Ay, By, C4, and Ry depend upon the method of linearization.

For linearization three methods were tried. In the first method, we

simply let

(ad,)" = (a1)

(85) » =123, (3.3)

where ( )0-! represents the known values at the (previous) (m-1)th iteration.

The iteration is started by taking 41 x = 43 k.1 for all i. With this

linearization the coefficients in eqn. (3.2) are

.................................
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A -5 (1°B)[D1(Gi-l,k)m-1 A T J 1=1,2,000,(n-1) (3.4a)

3E oE
-1 -1 1, %
B By = (8 )" [(Ai’k)m +E3+62(W+_52_)1x:|
N ’

l-.: 82 m-1 m-1 _
g + 3% (1-28) [Dl (ci’k) + Ep (8 ) ] » 1 =0,1..0,n (3.Lb)
w
“ 82 m-1 m-1
C; = 3% B|D, (Gi+l,k) + E (Aiﬂ,k ) s 1=1,2,...,(n-1) (3.ke)
L 3 5 30,,( 62)
B BBt a1 0heen (34)
h(Ai,k)

O
o3

A= - % [Dl(Gn-l.k)m-l + 5 (1-28) (An-l,k)m-l] 'a (3.ke)

R RN
o
[a]

Co = o= [‘)1 (cl,k)”“"1 - E (1-2p) (A1 k)m‘l] . (3.4¢)

where

2
R
' = - _— =
G Rc[Rc/2 + 30,8/4 - (R + 3 5 ) ( 1+ D3A/Rc)] F=Q/a ,  (3.g)

18
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and the boundary conditions in (2.20a) have been taken into account. This
method works but has two drawbacks. Its convergence is slow, and it requires
l heavy under-relaxation for convergence. The latter implies that it is

necessary to under-relax the values of A after every iteration according to
| (M) = (A)™2 + [(A)m - (A)m-l] . (3.5)%

where the relaxation factor A < 1. In fact, it was found that A decreases
I from about 0.5 at Zo to very small values as Z increases. Typically A < 0.1
for Z > 0.02.

In the second method, we used Taylor series expansion in order to

5 linearize terms containing 42 and A3. Thus we let
m m=-1 m m=-1
: ()7 = 207 (s, - 2 (207 . o
and
- 2 n m-1 m » -1
() = 2(a)  (a) - (84 - (3.60)

[

With this linearization the coefficients in eqn. {(3.2) are

: A * - g (1-8) [Dl(Gi-l,k)m—l +2 El(Ai-l,k)m-l]’ 1=1,2,..0,(n=1)  (3.Ta)

* This equation is to be treated in the context of an equivalent FORTRAN S

) statement. —
: )
vl
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_ 3E, OE
m-1 m-1 1 3
By = (8 ) [3(Ai,k) + 285 + 2(82) (ix" * E)i k]
+ % (1-28) [Dl( Gi’k)““l +2 El( Ai’k)‘“"l] , 1 =0,1,.00,n (3.70)
c, = 32 8 [Dl (Cia1 )>t s 2E Biat )m"l], 1=1,2,...(n-1) (3.7¢) -
3D,(482) m-1
_ .3 2 2 3
Ry =8 k1 ¥ B3 8y e * a(a, +2(a] . )
1,k e
82 5 m-1 2 m-1 2 m-1
+ B 3 [B(Aiﬂ‘k) +(-2e)(ag, ) - ew) (8 ) ]
%, OE m-1
3 2 . R
+ + 82 (— +——) ] A » 1=1,2,404,(n=1) (3.74) E
[E3 X W)y, ( 1,k ) :
_ &7 -1 1]
A= - '8?[”1(Gn-1,k)m + 28, (1-28) (An_l’k )™ ] , (3.7e) _
(YA m-1 -1 .
C, = &= [Dl((}l’k) - 2E, (1-28) (Al,k)“‘ ] ; (3.7¢)
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3 , 3D,(82) m-1

o 3 2 2 YA 2

Ro = %0,k-1 * B3 8 1 * = B x (1-28) (Al,k )

d

- n-1 3E 3E

i m-1 Lt ,_3

- +(85 ) [ 2 (8,x) E1 o (1-28) + E5 + &2 ( ®x *® )0 k]’ (3.Te)
= 3D,( 62) m-1

- .3 2 2

- R ® k-1 Y B3 et . w1 = o1 sx (1- 23)( l,k)

E (85 %)

. 1 3E 3E

~ 2 Sn m-l ._.].'. —.3.)

i +(An,k [2 (8,) 7 + By 6X (1-28) + E; + o2 ( x "% ) k] »  (3.m)

where G is again given by (3.hg) and the boundary conditions in (2.20a) have
been accounted for.

It is of interest to note from egqns. (3.7) that the Taylor series
expansion was not used to linearize the right side of eqn. (3.1) as well as
the terms involving Q on the left side of (3.1). While such a linearization

of the right side of (3.1) can be carried out without much difficulty, it was

not found to be beneficial. The unnecessary complication was therefore
avoided. The Taylor series linearization of terms involving Q in (3.1) was
also tried but was found not to work at all. This method was found to be the ﬁéh

best of the three. It allows a larger step size (6Z) in the Z-direction, and

P
P )
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‘a larger relaxation factor A than the first method. Overall, it is better
than the first method by a factor of at least twenty, and was therefore

adopted. The third method consisted in the use of Newton-Raphson method for

& solution of the non-linear equations. A general outline of this method is 7¢§‘
given in Appendix B. Though this method does not require any relaxation
factor, it produced absurd results (A's oscilling with X after a few step

sizes in the Z-direction), and was therefore abandoned.




L. COMPUTATIONAL DETAILS

Before tile set of equations (3.2) resulting from eqn.(3.1) can be solved,
we need to specify values of the dimensionless parameters El’ E3 and Dz‘ This
requires the prior knowledge of shear stresses Sland Ss, and the temperature
Tw(xl, z) of the condensate-wall interface. The computer code does have the
provision for specification of shear stresses S1 and S3 but for the present
results both these stresses were set to zero. This is because vapor dynamics
that determines these stresses is beyond the scope of the present work. The
computer code, however, does calculate Tw(xl,z) by considering two-dimensional
conduction within the fluted tube as well as the condensate film. For this,

the Laplace equation

- 2 2

- is solved subject to the boundary conditions

~ %% = 0 at x = 0, P/2 vhere P = pitch of the flute,
) T = Tg at the vapor-condensate interface, (4.2)
¥ and T = T, at the coolant-tube interface,

~i wvhere k is the thermal conductivity, and T, is the coolant temperature assumed
to vary linearly from the coolant inlet to exit temperature. The last
boundary condition in (L4.2) needs modification due to a film resistance on the
- coolant side but such a specification either requires an ad-hoc value of the

film resistance or a consideration of coolant dynamics that was also

Fe A N

{: considered beyond the scope of the present analysis. Solution of eqns. (L4.1)

b.\

% and (4.2) was obtained by a finite element method in which the region OABCO

;f 23
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(Fig.3) was divided into several linear triangular elements. Details for this

can be found in any text on the finite element method. Some care is, however,
required since the thermal conductivity of the fluid in region ABEDA is vastly
different from that of the tube material in region DECOD (Fig.3). The finite
element method was preferred over the finite-difference method owing to the
irregular shape of surface.AB (Fig. 3). From this solution, we get the values
of Ty(x,,z) on the surface DE (Fig.3).

Since the solution of eqn. (3.1) requires Tw(xl,z) which comes from the
solution of (L.1l) for which knowledge of &-values is essential (for locating
surface AB in Fig.3), the two solutions are coupled. Also, since the solution
of (3.1) is found iteratively, it implies that eqn.(l4.1l) should be solved at
every iteration. This places a rather prohibitive demand on the computer
time. However, since (8Z) is small, of the order of 10-5, changes in § are
small at every iteration with the result that it is not really necessary to
solve equation (4.1) at every iteration. Thus (4.1) was solved only once per
step in the Z-direction. This saves considerable computer time since the
finite element solution of (L.l) requires almost as much computer time as
nearly one hundred iterations for solution of (3.1). Some sample runs were
initially made to confirm that the error in §-values due to this time saving

feature was really negligible.

4.1 Condensate-Vapor Interface Profile

As pointed out in Appendix A, one method for finding d(l/Ri)/dx1 is by
use of equation (A.8) which involves derivatives of fy(x), where fy(x)
describes the condensate-vapor interface at any Z. Several methods were used
to find these derivatives but none of them proved worthwhile since fy(x) is

known at unequally-spaced values of x. The methods are listed below for the

sake of completeness.
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i) Cubic splines were fitted in a least squares manner through fy values
to find fi' and fin. Then cubic splines were fitted through the previously
computed fi' values to find fi"'. A slight variation of this method was to
fit cubic splines repeatedly through fy, fi' and fi" values to find fi"'.
Both these methods gave different values for fi" and fi"' pointing to their
futility.

ii) Parabolas were fitted through three consecutive points in succession
on the condensate-vapor interface, and Ry and d(l/Ri)/dx1 were computed at the
point central to each set of three points. This also led to inconsistent
results.

iii) An attempt to fit a truncated Fourier series (having 3-4 terms)

through fj values was made. This was attempted since we were working with a
sinusoidal flute. However, since the fit itself was poor, no attempt was made
to calculate the derivatives. A better fit (Fig. 6) was obtained by fitting

(al+ a, cos 27x/P) through all (n+l) values of £y, where the coefficients a

2 1

and a, were found for a least squares fit. However, even this fit was
considered inadequate to find d(l/Ri)/dxl. A slight variation of this was to

fit (a1+ a, cos 2%x/P) through the first n/2 values of fj (for x < P/2) and a

2
similar curve through the last n/2 values. This produced a very good fit on
visual inspection (Fig.7). However, using it to find d(l/Ri)/dx1 leads to
wiggles in §~values. Solution of equations (3.1) and (4.1) starting from Zs
leads to film shape rising suddenly in the trough region (Fig.8) after a few
(62) steps, thus violating the boundary conditions there., Starting from

Z = 0.07, with results at Z = 0.07 found by better methods, the solution leads
to such large wiggles that even negative values of § are found only a few

steps downstream. In an effort to improve upon this situation, velues of §

wvere computed to correspond to the fit in Fig. T before iterating. This,

e e el e L L e e e e et e
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however, slowed down the convergence so mch that even two hundred iterations

were insufficient for the same tolerance. In fact, it appeared as if

convergence would never take place. Nevertheless, this exercise did point out ,:f
AR
the reason for the failure of the above technique, since the differences EEE
between the original §-values and those conforming to the good (!) fit in EEE
Fig. T were found to be large, as much as 20%. hxa
iv) Efforts to use lagrangian interpolation to compute fi{ values at :
equi-distant x values, and then use techniques described in Section 4.2 to #iﬁ
find fi', etc. also produced absurd results. Use of equation (A.8) to "g
compute d(l/Ri)/dx1 was therefore abandoned. -.:
It may be mentioned that while using eqn. (I.8) to find —d
d(l/Ri)/dxl, a futil; attempt was also made to solve the partial differential ?}3
equation (2.13) directly in terms of §3 rather than 6. Efj;
—
4.2 Derivatives of Condensate Film Thickness }-ﬁ
Use of either eqn. (A.15) or (A.18) to find d(l/Ri)/dxl requires the :
determination of first three derivatives of § we.r.t. Xye Fortunately § is ké7
knowvn at equidistant values of Xy It is therefore easier to find these der- o
ivatives than those of f{ w.r.t. x. Several methods for this determination =
were also tried with varying degrees of success. ii
: i) Derivatives of delta were found by fitting a cosine to the vapor- E?g
condensate interface in a manner analogous to that described in Sec. 4.1, but iﬁ;
it resulted in absolutely useless results. Iiﬁi
ii) Another fruitless effort was to fit least squares cubic splines, Eii

tey

repeatedly or otherwise, through §-values so as to find 6', § and §'''.

----------------------




" 1i1) The first derivative

set of linear equations (23,

? ]
81 t U8+,

L " "
8, + 108 + 8, =

and the second derivative, §'

1 (6xl)2

..........................

of § wor.t. x, was found by solving the following

1
p.56]:

_ 6
-'Ei;( 141 ~ 84 ) » 1 =1,2,...,(n-1),

(.3)

's by solving

12
(61-1 - 25 + 51+1)’ 171,250+, (n-1),

- so) , (4.4)
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Though these sets of linear equations are tridiagonal and can be solved
easily, they do represent an increase in computer time. Besides the method
Yields rather poor results.

iv) A method that gives better results than those obtained by above
methods is based on passing least squares quartics through seven consecutive
points at a time. Leaviné the details to the reader (see also [24], p.L92),
we present the equations for finding 6;, 6; and 6;" for 1 =0, 1,44., N
These equations make use of the boundary conditions (2.16a), and the fact that

§ is known at equidistant x, values.

1

Relations for §', accurate tolo(dx )h, are

(=]
[}

(2251_3- 678, o= 588, .+ 588, + 676, - 226, )/ 2526, ,

1+1 1+3)

i=3,4,...,(n=3),

[«
[

- (-saso - 678+ 808, + 675, - 225h)/ 2528x,

e
o s a0
daad B 4 2 o *

' (4.5) -

8, (--675o - 366,+ 586, + 678, - 2265)/ 2526x, , 5
-
]
' :-.:.%
5. 5 = (225n-5 - 678 ), - 588 _ + 368 , + 675n)/ 2528x , 4
and :"::
i
' )
.1 = (226n-h - 676n_3 - 806n_2 + 676n_1 + 586n)/ 2526x, . §}§

~28-




Relations for 8", accurate to 0( le)", are

5 = (-1351_3+ 678, o= 196, ;- T8, - 196, + 676, , - 13ci+3)/ 1326

i = 3’2“:""(“”3)9

" 2
5" = (.2ss3+ 1345, - 386, - 7060)/ 13266

"

_ 2
61 = (-136h+ 6763 - 3262 - 361- 1960)/ 1326x; ,

”

5§, = (-135 + 6751», - 19as3 - '{062-'- 32614- 6760)/ 1325x§ , (4.6)

2 5

1" 2
sn-a = (-136n_5+ 67 Gn-h' 19 Gn_3- T0 Gn_2-32 6n-1+ 67 Gn) / 132 le .

= 2
§.4° ('136n-h+ 676n_3- 328 - 38 ;- 195n)/ 1326x]

and

” 2
6y = (268, y* 1348, , - B8, 4 108}/ 13282

7
Ry
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Relations for &''' are

_ 3
5 (- R FEA S S T ‘51+3)’ 6 &3

i = 3,’*,...,(1’1-3),

tee

- - 3
Y O R RN VAR - (8.7)

1y

=, 3
§ o = (65 - Gh - 63 + 60) / 66x1 ’

,.~ 1T _ 3
- 02 (- 8 _5 + an—h + 6n—3 -8 )/ 6 le .
X and
=
s s § . +28 5 ) 6 6x3 b
n-1 " (' n- * n-3 n-2 - 6n—1 “ n / le * o 1
N = 4
Sy
. R
y 30 o
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Use of these equations for finding &', 6" and §''' leads to mild
fluctuations in d-values after a few steps in the Z-direction. Their use had,
. therefore, to be abandoned. Less accurate relations involving an error of
0 Gf also yielded similar results.

v) The best method for finding the derivatives of 6 for this problem

II turned out to be the use of central difference formulae

\J
si = (6i+l - ai_l)/ 2 th1 , 1=1,2,000,(n-1) .

(4.8)

for the first derivative, and

= 2 =
5, = (61+1 -26, + 51-1)/ &7 . 1=1,2,...,(n-1)

o
"

(cl-so)/ 2 6, (4.9)

2
5 (cn_l-cn)/ 2 &5,

for the second derivative. The third derivative was found by applying (4.8)
to 8" calculated from (4.9). This method gave the best results for

§-distributions, and was therefore adopted.
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5. RESULTS AND DISCUSSION

The complete computer program was developed in two stages. In the first
= stage the solution of eqn. (3.1) alone was attempted. This program was tested
for the vapor and tube properties for which results are available in [21]. As
pointed out in "Introduction", Stack and Merkle solve a much simplified form
of (3.1) since besides other simplifications, they use Cartesian coordinates
rather than curvilinear coordinates. In fact, we had modified our earlier

program to solve Stack and Merkle's equation (14) for the condensate film

:f thickness, and obtained identical results. The finite element program for the
- solution of eqn. (4.1) was then developed, and the two were coupled.

%1 In the following we present results for one vapor-tube combination for

Ei wvhich experimental data is also available [10,11] for comparison. Since our
ii analysis assumes the radius of curvature of the fluted tube to be large

compared to the film thickness, it is not realistic to consider sinusoidal

x flutes with amplitude-to-pitch ratio much above 0.2. With this in mind, we

LA

computed results for tube 'F' of Ref. [10,11]. This tube has seven skirts and

an I.D. = 22,9 mn. Details of the actual shape of the flute, and its

dimensions are not available in [10,11}, and were therefore approximated from
a blow-up of the tube 'F' photograph in [11]. The relevant fluid (R-113) and

tube (aluminum) properties are

8.58628 kg/m3 ,

p = 1498.343 kg/m3 . Py

v = 3.2067x10~7 m2/s , o = 0.01432 N/m , T
heg = 145225.56 J/kg , Ty = 325.5 K , 3
ke = 0.06951 W/m-K . ky = 205 W/mK . R
Twoo = 318.5 K . T. = 318.5 K (in), 318.8 K (out) |, =]
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L = 0.142875 m(= T X155 h, = 0.88077T mm ,

t
P=1.6141 m , hg = 0.15543 mm >

where k¢ and ky are the thermal conductivities of the condensate and fluted
tube respectively, and hy and h, are associated with the flute shape (Fig. 3)
taken to be
£(x) =h_+h_cos 22X (5.1)
t o P
Thus h, is half the amplitude of the flute. The fluid properties were
calculated at 322 K (mean of Tg and Tyoo) from known correlations [25]. These

values lead to
G'Y = 0-08051 mm ’ xP = 0.8761"87 mm .

After some mumerical experimentation involving different step sizes,
etc., the solution of eqn. (3.1) was started from Z, = 5x10~6 with B = 1/2
(corresponding to central differencing in X), 8X = 0.05, an initial &Z =
5x10-6, and an initial A = 0.5 (see eqn. (3.5)). Further iteration for the

solution of (3.1) was terminated when

< € for all i at every k , (5.2)

RO OW

where ¢ was taken to be 10-6. As we marched downstream in the Z-direction, 62 i;z-
RONSY
.. E
wvas increased and the relaxation factor A had to be decreased according to =~
Table 1, vhich also gives an idea of the number of iterations before (5.2) was 53§;

e e e e e
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satisfied. Clearly, it takes longer to get the converged solution as we
proceed downstream in the Z-direction. Reasons for this will be apparent

. sQon.

Table 1 Some Parameters for Solution of (3.1)

§2 A Z # of iterations
5x10-6 0.5 up to 0.002 ~ 15 3
N .
X 8x10-6 0.2 up to 0.01 ~ 30
1.25x10-5 0.1 up to 0.0225 ~ 50 ;
2x10~5 0.06 up to 0.086 ~ 90
R

Three divisions of the region OABCO (Fig. 3) into finite elements for the

4 Te v a4 D¢ T
B . PRI ’
P S EPLE .

solution of eqn. (4.1) were tried. The one selected on the basis of adequate

computational accuracy and relatively economical calculation had 154

e, 8.%.4 "
S

triangular elements with 108 nodes. There were 11 nodes each on the faces AB,

.
. R
R e

BC, OC and DE (Fig. 3), and 15 nodes on the face AO.

s

o

Fig. 9 shows, to true scale, the flute shape (thick curve), and the ﬂfﬂ

- condensate film shape (dashed curves) at four values of Z = 0.001, 0.01, 0.03, e
4 : -
T and 0.086. As expected the film thickens quite rapidly in the trough region -
1.': ‘-.:-
. while it remains thin over the crest. Unfortunately we are unable to present R
,, any results for Z much greater than 0.086 since convergence of our solution D
! for the film thickness (with the same tolerance ¢) becomes very slow. The -__l'f:
principal reason for this slow convergence is the thickening of the film in _fj::-
!_ the trough. Moreover, it is really futile to try to speed-up the convergence .
R R
s R
p"' _\‘.
- kS
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since our formulation for the condensate film thickness is on shaky ground as
the film thickens. The non-linear partial differential equation (2.13) comes
from a boundary-layer type analysis, i.e., we neglect all velocity gradients
except those in the direction normal to the fluted surface. While this is
perfectly reasonable over the initial portion of the tube height when the
condensate film is thin, it is increasingly questionable as the film thickens
in the trough region. It appears that for the fluid-tube combination
considered here, it is improper to analyze the film in the trough region in
the boundary-layer-sense for Z > 0.085. It is also clear from Fig. 10, that
shows the absolute value of d(1/Ry)/dx; at various Z values, that this
derivative is negligible in the trough region as compared to its wvalue in the
crest region. It is therefore appropriate to neglect the surface tension
effects in the trough region once the condensate film has thickened. Fig. 10
also plots the absolﬁte value of the derivative of flute curvature with xj,
and even at the low value of Z = 0.002, it is very different from the
derivative of condensate-vapor-interface-curvature with x3.

While these considerations will be undertaken in an extension of this
project, it is encouraging to note from Fig. 11 that a linear extrapolation,
on a log-log basis, of our results to date shows a fairly good comparison with
experimental data. Fig. 11 shows the heat load per half flute (in W) as a
function of Z on a log-log scale. The solid portion of the straight line is
based on computed results while the dashed portion is the extrapolation. The
lone circled point is based on the experimental data [11]. We also checked
that heat transfer rates across the faces AB and OC (Fig. 3) matched within
1%. Theoretically they should be identical since faces OA end BC are

insulated.




6. SUGGESTIONS FOR FURTHER WORK

Besides the deficiencies mentioned above, our present analysis also
neglects the transverse curvature term, i.e., it ascumes the film thickness to
be small compared to the radius of curvature of the flute. The analysis is
therefore restricted, in its present form, to flutes having a small amplitude
to pitch ratio. This is, however, a minor drawback since it seems
(analytically at least) that we can overcome this deficiency relatively
easily. Its implementation in the computer code is yet to be done.

Another assumption, common to all analyses to date, and far more serious
in terms of correct modelling of the practical applications, is the complete
neglect of vapor shear on the interface. Our code does have the provision for

studying its effect but since we have not analyzed the vapor dynamics yet, we

simply take the vapor shear to be zero at present. One should also consider
the coolant dynamics for a complete solution but all this will undcubtedly be

very demanding.
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APPENDIX A
CURVATURE OF CONDENSATE-VAPOR INTERFACE -

AND ITS VARIATION ALONG FLUTE SHAPE e

,;ﬁ Equation (2.13) for the Qetermination of condensate film thickness
h. 6(xl,z) involves the value of pressure gradient dp/dx1 which, in turn, .
depends upon d(l/Ri)/dxl, as is clear from (2.15). We present below some Ei;
relations for calculation of this quantity. é;é
The basic terminology is present in Fig. 3, wherein, f(x) denotes the i%i
flute shape and fi(x) the condensate-vapor interface. The position vector to aﬁ
4 a point on the flute is ;w’ and that to a point on the condensate-vapor Ez;
o interface is ;i, such that f:j
Ty - ry = meS (A.1) 1‘

>
vhere n, is the unit normal to the flute as shown in Fig. 3. We also let xy

be the curvilinear coordinate along the condensate-vapor interface.

2 Then by definition
S &>
32ri
1 . — (A.2)
Ry 8xi
- > e
g Now ry = (x, fi), (A.3) t};
= '
o and x§ = £X(1 + f12) dz , t—:
--': (A.h ) "".:
}f: Ol
oA R
where prime denotes differentiation with x. From equation (A.L4), we get o
5 1/2 =
~ dxy P! o
:'.: a__ = (1 + fi ) (Aos) ‘:-\.::




........................
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From {A.3) then i

d¥y  4aFy dx
dx; | dx dxg
-1
‘23 /2

'
= (1 +£4 (1,£4 ) .

Thus > " . -»‘-;
dr; f5 ' . .
= 5 (3 , 1) ° (A.6)

(1485 2) B

dxi

From equation (A.2) then

£ "| 2
1 _ l i . o
Ry 3/, (A.7) -

) - -
(1 + £y 2) I

And

@ (1, _4 (1,a e
dxl Ri dx Ri dxl -

sgn(fi') . £5 £y 1 o)
=———3/, [f1 -3 e (A.8) o
12,12 12 1, /2 —

(145 ©) (1+r; ) ] (1+f <) .

dx e
] '2 1/2 w -
since 4y = (L+f ) in analogy with (A.5). (A.9)
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While equation (A.8) seems to be in a convenient form for calculation of
d(l/Ri)/dxl, it is not practical since fj is known only at a discrete set of
unequally-spaced x-values. Thus, finding fi', fi" and fi"' is troublesome, to
say the least. Several attempts to use equation (A.8) had to be abandoned for
this reason (see Sec. L.l for details).

Another relation for the curvature of the condensate-vapor interface
comes from use of equation (A.1l), and the fact that the unit normal vector ;;

is given by

By = (- 3L dx
dxl’ dxl

12 '1/2 '
(1+f <) (-7, 1) . (A.10)

Thus, from (A.1l)

»> &f § >
ry =(x -—-——-——I—/-z- . f+————1/—2'), since ry = (x,f).

'
(1+£ 2) (14 2)
>
dri " (R
_ 't 8f ' ' & £
Therefore, = —(1 -8f - -——'?7? s, £+ 6 = ——'2—17—5) , (A.11)
(1+r ©) (14 <)

where §'z aslaxl but f'= df/dx, etc.. The reason for keeping 36/3x1 in place
of 38/3x is that solution of equation (2.13) leads to values of § at equidis-

tant xl-values but at non-equidistant x-values. It is therefore convenient

to find numerically derivatives of § with respect to xl.
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Carrying on further, we can find dzri_/dx2 from (A.11), and then use the

relation

.. . .._1
"'-‘ > 1o > n 2 > 1> n 2 1 / 2 7:‘:':
o 1 e ]Zlrs |2 - (rgrg )2 ] N
o RS R (A.12) et
. i =

+ 1|3 T

LIRS
+ > S
where r; = drj/dx, to get after some lengthy algebra the expression: T

g 1 l*s

e

[ ' -

F 8"+ v,88" + 136+ vy @ + vy (1-68" + 26 2| o
" R C , (A.13) 2

[ ' 3/2

g 2 2 o

2 [vg(146 2) + v, 62 + vg4l o
th

where

[

+

la)
n

_o¢"2 we  3¢'g"2 )

o Eed

ot e
O o
asen ArAoater -4

2
]
= 2
= 3/, » v, = (1402 (r 2
(1+£ 2)

Ad

] .
w2, o

[}

Can
[
+

s}

n
St
L 4

Y6

)
v

e .
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It is interesting to note that many theoretical analyses that claim to

yrerY

determine the surface tension effect based upon the actual shape of the

14

condensate-vapor interface invariably use

l 6"
Ry (e'9)2 ’

et Rl Jnd aui g

(A.14)

-

for the curvature of the interface. This follows from the correct relation
{ (A.13) if only the first terms in both the numerator and the denominator are
l retained. However, even for small &, there is hardly any Jjustification for
dropping all other terms in (A.13). The difference between the actual

d(l/Ri)/dxl and that obtained from (A.14) gets further amplified due to

differentiation.

For convenience let us write

%_=_|_1§_}2= N.sgplgn) ,

D D",

where the expressions for N and D are clear from equation (A.13). It is then

easy to get

a,1 sgn(N) | (v ne o ' ' !
E;I(ﬁz) = —5%75— [5 (Ys-ayl) + 8 {75 + 6(7h-71 )+ 38+
D

L
+ 68 2(Yh+ 271') + 6'{Y3+ 6(272+ Yh')} + 62Y2' + 6Y3']

.,.- I o 8
1

L] " t '
- ﬁ“z'ﬁ_ {(8'(21g8" + 208+ vg) + (1 +82)y" + 82y, + 8vg'}, (A.15) s
T
e
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-_ e e
L SR .
G

. At et CeN L
VAR SRR MROOSCE




: v Mp _ 3" [f"v 2r'¢"
2 T dx, . 7 YA
i 1 (1er'2)'/2 1+f

. 93 2r" 3'e"2 o
- 1 1oy 2 L1er 2
h (14 2)

' ' dy iv " " " '2¢"
Lt Yh =__i = f' _ f (3£"2 + Tf'f')+ 9r'2¢"3 ;

2 2
W2 e'2) (14¢'2)°

3¢ f ’

<
w
[}]
%
7]
[}

- 2f'f"(l+f'2;1/2
Y6 T ax

]

. vy 2r" (" 2r'e"? )
T T dx 5/2 - 2 ’

and d‘18
Y8 =& 3
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Equation (A.15) is quite complicated but as mentioned in the discussion on

.
‘-'

eqn. (2.13), it contains 336/3x§ « It is therefore essential to determine the
condensate film thickness as accurately as possible. Otherwise, errors in
finding the third derivative of § w.y.t. x; numerically will be excessive.

Due to these numerical difficulties, it was found that use of eqn. (A.1l5) to
find d(1/R{)/dx; resulted in mild oscillations in é-values after a few steps
in the Z-direction. Several methods (at least five) were used to find

§-derivatives w.r.t. x; but all resulted in oscillatory é-values; the least

oscillations resulted from the use of central-difference formulae.
3 In order to overcome this difficulty, another relation for 1/Ry and its
o derivative w.r.t. xj was developed. This relation, based on eqns. (A.2) and
&L (A.1), is )

L 32(r, + st)'

Ry WER

2" 2# hd
¥ry ey Wy a5 s 2
+6'—+2—"3‘+“w_2 , (A.16)
X

2 2 X
axl 8x1 axl 1 3 1

>

’
vhere 3/3x; has been approximated by 3/3xy. Noting that r, = (x,f), and n,

is given by eqn. (A.10), we get from (A.16), after some algebra, that

172
1 ' ", 2 [ "2
i;— = [(01+ a26 + a36 + ahd )< + (s1 + 326 + 536 + Bhs ) ] , (A.7)
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s
"
2N
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e

-
¢}
L]

w
[o )

1 ' -2
£'(1+r 2)

»
)
"

_ sz' ~'318hf" ,

w
n
|

B3 = 2a7 ,

X =1
and o) (14£'2)7 /2

From equation (A.17) it follows that
- a,1

DRy = Rallag +ay8 % ay8" + 0, 8)(8, + op'6 + 30,8" - 388" + o8")

-

+(B) + B,8 + By8' + 8,8 )(-a, + 8,6 + 38,6 + 308" + 6N} , (A.18)
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where
]
- T f(hf2+13f' £"') _ oty _ 2822073
’ 2 dxl = ' 3 2 - = ' 2 L]
(1+4£'2) et (14¢ 2)
and
das ' 2
B8'= 2 =4't"+¢"(2Ba -aB)-88 "' .
2 2 b2 11T 1y
1
3 3
l Equation (A.18) also contains 9 6/3x1 , but unlike equation (A.15), it yields

stable (non-oscillatory) values of & upon integration of eqn.(2.13). This

relation was therefore used in the final computer code.
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APPENDIX B

l Nonlinear Equations Solution by Newton-Raphson Method

Consider the set of equations

l . (K] {x} = {R}
| T gy ) (
z ’ 9 oo, = R Py 9 oo, ,i=1, 2, LIS .
or 5 ki 5 x1 x2 Xn )Xy i x1 x2 Xp) n
»
[ ]

where kiJ and Ry are non~linear functions of xl, x2, ees Xpe

n
. Let Filx § X 500y %) = T kislx 5, Xy eey X 0%3 = Rs{X 5, X 5 eey Xn)s
i 1P s X, Xn 4o1 19050 %, Xn /X3 iV %, n

1, 2, «e, N,

8
]

th
So Fy is the residue in the i eqn. For solution Fy =0, i =1, 2, .., n.

Expanding F; by Taylor series, we write

Fs(x +8x , x + AX , oo, + Ax,)
i £ 17 2 2’ x“ n

n
= Fi(xl’ x29 eey xn) + I aFi (x s X 3 ee,yX )AXJ + eee,

. J=1 axJ 1 2 n

] -
i: i = 1 'Y 2 9 ooy Ne * :.:
R
'o. -“ .':4
- Neglecting all higher-order terms and setting leftside = O for a solution, I
: ve get BN
. n : ;f
: T W (x,x, .., Xg)Bxg = Fylx 4 x eeey xp) , 1=1,2, o0, n. :
J _

N
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LY.

Thus Newton-Raphson iteration algorithm can be written as
m m+l m
(3] {ax} = -{F}

m+l m m+l
{x} = {x} + {ax}

m
vhere m denotes mtP iteration & [J] 1is the system Jacobian at the mth itera-

tion.

m
The elements of [J] are

dF
J?J = ﬁ(xlf,xzm,..,xg).

m
If it is too time consuming to compute [J] at every iteration, find [J| once

and use it until convergence, which will be slow, however.
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(b) Cross section of vertical condenser.

Fig. 1. Vertical Submarine Condenser
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Fig.3 Co-ordinate System.




....................................................................

4
X

=
{
x.

P‘:g L‘——A |

Fig.4 Control Volume in the Condensate Film.
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